4 - 5 novembro 2016

Modelação do Sistema Solar na cidade de Tomar: trabalhar a noção de escala, distâncias e tamanhos relativos

Maria Cristina Costa, Carla Carvalho e Silva

Instituto Politécnico de Tomar Estrada da Serra, 2300-313 Tomar

1. Resumo

A forma dos planetas e a caracterização da sua trajetória em torno do Sol, são aspetos do sistema solar presentes nos conteúdos curriculares do ensino básico. Na maioria das vezes, esta matéria é lecionada a partir de imagens presentes nos livros nas quais, quer as dimensões dos planetas quer as respetivas posições relativamente ao Sol, não se encontram à escala. Pretende-se com este trabalho fazer uma modelação do sistema solar, assumindo o diâmetro do Sol igual a um metro, sendo o principal objetivo desenvolver junto dos alunos a noção de escala, aplicada concretamente às distâncias e tamanhos relativos dos planetas e do Sol. A grandeza utilizada para definir o tamanho relativo é o diâmetro do Sol.

2. Introdução

O rigor científico no ensino da astronomia nos primeiros anos de escolaridade é de reconhecida importância (Trumper, 2003), assim como as pré-conceções de alunos e professores sobre este tema (Kalkan, & Kiroglu, 2007).

O Sol e os planetas fazem parte dos conteúdos programáticos de estudo do meio, no 1.º ciclo do ensino básico. Por limitações de espaço nos manuais escolares, a representação do sistema solar não pode ser rigorosa, na perspetiva da dimensão e posição relativas de planetas e Sol. Para os alunos terem uma ideia mais próxima da realidade, lançou-se o desafio de fazer uma representação aproximada do sistema solar na cidade de Tomar, numa escala em que Sol apresente um metro de diâmetro.

Esta atividade, inspirada no projeto MiMa (www.mathematicsinthemaking.eu), é parte integrante de um projeto piloto de intervenção pedagógica, intitulado "Matemática, Ciências e Tecnologia: Uma abordagem experimental no ensino básico" (Costa, 2016), que resultou de uma parceria entre a Academia da Ciência Arte e Património (AcademiaCAP), do Instituto Politécnico de Tomar (IPT), o agrupamento de escolas Nuno de Santa Maria e o Centro de Formacão dos Templários.

3. Metodologia

No âmbito desta experiência propõe-se ir às escolas explicar às crianças a importância da noção de escala, aplicada em concreto ao caso do sistema solar na determinação de distâncias e tamanhos relativos de Sol e planetas.

Para trabalhar a noção de escala é fundamental transmitir aos alunos a ideia de que esta serve, no caso do sistema solar, para converter "números muito grandes" em "números mais pequenos" de modo a que permita, por um lado construir uma representação do Sol e planetas, e por outro representá-los num mapa de acordo com a distância média de cada planeta ao Sol. De seguida é importante explicar como são feitas as conversões de escala que constam na tabela realizada no âmbito do projeto MiMa (Figura 1).

Planet	Diameter (Km)	Scaled diameter (mm)	Orbital radius (Km)	Scaled orbital radius (m)
Sun	1 391 900	1 000		
			MiMa	
Mercury	4 866	3.50	57 950 000	41.63
Venus	12 106	8.70	108 110 000	77.67
Earth	12 742	9.15	149 570 000	107.46
Mars	6 760	4.86	227 840 000	163.69
Jupiter	142 984	102.73	778 140 000	559.05
Saturn	116 438	83.65	1 427 000 000	1 025.22
Uranus	46 940	33.72	2 870 300 000	2 062.15
Neptune	45 432	32.64	4 499 900 000	3 232.92

Figura 1: Diâmetro dos planetas e respetivo raio orbital médio em torno do Sol - valores $\,$ reais e à escala (assumindo o diâmetro do Sol igual a 1 m)

É também possível, após discussão com os alunos, propor uma outra escala que se entenda mais adequada para modelar o sistema solar. De seguida devem marcar num mapa local, a posição do Sol e planetas, tendo em conta a escala do próprio mapa.

Por fim, para os alunos terem uma perceção das dimensões relativas dos planetas e respetivas distâncias ao Sol na escala proposta, apresenta-se a modelação desenvolvida pela AcademiaCAP, com a colaboração de docentes e técnicos do IPT.

A construção do Sol foi desenvolvida por engenheiros civis da UDE, da Escola Superior de Tecnologia de Tomar, do IPT, no âmbito da Semana da Engenharia. Depois, optou-se por colocá-lo no Campus do IPT, em local bem visível de modo a ser visto por quem circule, quer no IPT quer na Estrada da Serra (Figura 2).

Figura 2: Colocação do Sol no Campus do IPT, junto à entrada principal

E-mail ccosta@ipt.pt; carlasilva@ipt.pt

Os planetas foram feitos em barro pelas crianças que participaram nas atividades da AcademiaCAP férias da Páscoa 2016 (www.academiacap.ipt.pt), no laboratório de Conservação e Restauro (Figuras 3 a 5), tendo sido consultados para o efeito os valores obtidos para os diâmetros relativos da tabela (Figura 1).

Figura 3: Planetas feitos em barro na escala proposta

Figura 4: Construção dos planetas nas

Figura 5: Colocação do anel de Saturno

De seguida foram vidrados e pintados para ficarem com a sua cor característica (Figura 6).

Figura 6: Planetas do sistema solar

Depois de concluída a etapa de construção dos planetas e do Sol, passou-se à fase de escolha dos locais onde seriam colocados os planetas de acordo com a localização do Sol, situado no campus do IPT. Nesta tarefa utilizou-se o Google Maps para definir as coordenadas exatas do Sol. De seguida, a partir dos raios orbitais médios (à escala) dos planetas em torno do Sol, escolheram-se os locais estratégicos, apresentados na figura 7.

Figura 7: Localização do Sol e planetas na cidade de Tomai

4. Conclusões

Esta foi mais uma atividade multidisciplinar que resultou de um trabalho colaborativo entre vários intervenientes desde engenheiros civis, conservadores restauradores, físicos e matemáticos e que consideramos ser adequada para implementar no ensino básico.

No que diz respeito às crianças, para além da aprendizagem significativa proporcionada por esta experiência, também há a realçar a componente lúdica, resultado da manipulação e modelagem do barro na construção dos planetas.

Agradecimentos

Agradecemos ao Engenheiro Fernando Martins, Engenheiro Pedro Costa e ao Técnico do Gabinete de Manutenção Carlos Ferreira, a colaboração prestada na construção do Sol. Agradecemos ao docente de conservação e restauro, Ricardo Triães, a colaboração prestada na construção dos planetas em barro e respetiva vidragem.

Referências

- Costa, M. C. (2016). Matemática, ciências e tecnologia, uma abordagem experimental no ensino básico: divulgação de um projeto piloto e trabalho para o futuro. In XVIII Seminário Regional da Educação. Tomar: Biblioteca Municipal.
- Kalkan, H., & Kiroglu, K. (2007). Science and nonscience student's ideas about basic astronomy concepts in preservice training for elementary school teachers. Astronomy Education Review, 6(1), 15-24.
- Trumper, R. (2003). The need for change in elementary school teacher training—a cross-college age study
 of future teachers' conceptions of basic astronomy concepts. Teaching and Teacher Education, 19(3),
 309-323

